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Bayesian Networks (BN) provide a robust probabilistic method of reasoning under uncertainty. They
have been successfully proposed in the field of Artificial Intelligence (AI) as the most flexible formalism
for reasoning under uncertain knowledge (Neapolitan 1990; Pearl 1989; Jensen 2001). Their success
stands from several factors:

• the graphical representation of the knowledge to reason with; in particular the graphical represen-
tation of the set of dependencies among the modeled variables, through the notion of d-separation
(Pearl 1989);

• the restricted number of probabilities to be specified with respect to a complete joint probability
model;

• the possibility of performing different kinds of inferences such as prediction (i.e. to infer information
about effects starting from causes), abduction or diagnosis (i.e. to infer information about causes
starting from effects) and inter-causal reasoning (i.e. to infer information about one cause given
information about the effect and another cause);

• the possibility of “learning” the model from a database of observations.

For these reasons, they have been successfully applied in a variety of real-world tasks (Heckermann and
Wellman 1995). However, they have received little attention in the area of dependability and reliability
analysis. A few exceptions are the work by Almond exploiting a special kind of graphical models for
modeling the reliability of a system (Almond 1992), the approach in (Torres-Toledano and Sucar 1998;
Solano-Soto and Sucar 2001) where reliability block diagrams are converted into Bayesian Networks for
the analysis and the recent work by Langseth (Langseth 2002).

The present talk is aimed at exploring the capabilities of the BN formalism in the modeling and
analysis of dependable systems. Starting from the work described in (Portinale and Bobbio 1999; Bobbio,
Portinale, Minichino, and Ciancamerla 2001), we compare BN with one of the most popular techniques
for dependability analysis of large, safety critical systems, namely Fault Trees Analysis (FTA).

The talk shows that any Fault Tree (FT) can be directly mapped into a BN and that basic inference
techniques on the latter may be used to obtain classical parameters computed from the former (i.e.
reliability of the Top Event or of any sub-system, criticality of components, etc). The advantage is that,
by using BN, some additional power can be obtained, both at the modeling and at the analysis level.

At the modeling level, several restrictive assumptions implicit in the FT methodology can be removed
and various kinds of dependencies among components can be accommodated. In particular, while classical
fault trees are essentially a binary formalism (i.e. dealing with binary events like ’component up’ or
’component down’), Bayesian nets deals with multi-state variables, by allowing for example the modeling
of different behavioral modes of a given system component.

This is very important when different kind of faults of the same component may lead to different
malfunction in the whole system; incorporating such a feature into FTA requires a major modification of



the basic framework (see (Garribba, Guagnini, and Mussio 1985; Doyle, Dugan, and Patterson-Hine 1995;
Wood 1985)), while it is extremely natural by using BN, where also sequentially dependent failures can
be contextually modeled (Bobbio, Portinale, Minichino, and Ciancamerla 2001; Bobbio, Franceschinis,
Gaeta, Portinale, Minichino, and Ciancamerla 2003).

Moreover, while in FTA logical dependency between components can only be modeled through logical
gates (AND/OR gates or similar), noisy probabilistic gates can be naturally introduced and modeled
by using a BN, as well as the incorporation in the model of common cause failures, coverage or similar
dependencies.

At the analysis level, classical quantitative analysis can be easily performed by querying the network
for the probability of the Top Event node being true. On the other hand, general BN inference is
able to return the joint probability of any set of variables, given that some variables of the net have
been observed (evidence variables). This means that a general diagnostic analysis can be performed, by
computing arbitrary posterior probabilities; for instance, it is possible to estimate the real criticality of
a component, by asking for the posterior probability of its failure, given the the Top Event has occurred.
Moreover, posterior analysis can provide what is called the Most Probable Explanation (MPE) of a fault,
by providing the most probable configuration of system components given that a fault has occurred
(Portinale and Bobbio 1999; Bobbio, Portinale, Minichino, and Ciancamerla 2001).

The above aspects will be presented by considering some real-world examples and applications rang-
ing from the control of multiprocessor computer systems, to the analysis of the reliability of digital con-
trollers (industrial PLCs, turbin control systems, etc...) (Portinale and Bobbio 1999; Bobbio, Portinale,
Minichino, and Ciancamerla 2001; Bobbio, Franceschinis, Gaeta, Portinale, Minichino, and Ciancamerla
2003).

We will finally report on some work in progress concerning the use of formalisms extending BN to
a parametric representation (particularly useful when modeling systems with several redundant compo-
nents) (Bobbio, Montani, and Portinale 2003). This is in line with a similar work presented in (Bangsø
and Wuillemin 2001) where Object-Oriented Bayesian Networks are used in order to introduce classes of
nodes with similar instances, while in (Bobbio, Montani, and Portinale 2003) we investigated the pos-
sibility of exploiting Probabilistic Horn Abduction (Poole 1994), a logical formalism extending Baysian
Networks from a propositional to a (restricted) first-order language.

Another extension we are currently dealing with is the use of Dynamic Bayesian Networks (DBN)
when modeling so-called dynamic gates (Montani, Portinale, and Bobbio 2004). We show how BN can
provide a unified framework in which also Dynamic FT (DFT) (Dugan, Bavuso, and Boyd 1992; Dugan,
Bavuso, and Boyd 1993; Manian, Coppit, Sullivan, and Dugan 1999), a recent extensions able to treat
complex types of dependencies, can be represented. Dynamic Fault Trees introduce four basic (dynamic)
gates: the warm spare, the sequence enforcing, the probabilistic dependency and the priority AND.
DFT are typically solved by automatic conversion to the equivalent Markov model (Dugan, Bavuso, and
Boyd 1992). Through a process known as modularization (Bobbio and Raiteri 2004; Dugan, Sullivan,
and Coppit 2000) it is possible to identify the independent subtrees with dynamic gates and use a
different Markov model (much smaller than the model corresponding to the entire FT) for each of them.
Nevertheless, there still exists the problem of state explosion, since the set of states can be significantly
large.

In order to overcome these limitations, we discuss how to characterize dynamic gates within the
Dynamic Bayesian Network framework, where a factorized representation of a Markov Chain is adopted.
We provide a translation of dynamic gates into a DBN, by comparing the approach to standard Markov
chain representation of the gates. We also present the reliability analysis of a real-world system (a cardiac
assist device presented in (Ou and Dugan 2000)); results demonstrate how DBN can be safely exploited
for quantitative analysis, as well as for enhancing modeling and analysis of the given system (Montani,
Portinale, and Bobbio 2004).
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